Please rotate your device to landscape mode for a better experience.
Connexion

Chicago Wolves
GP: 14 | W: 7 | L: 5 | OTL: 2 | P: 16
GF: 66 | GA: 52 | PP%: 17.86% | PK%: 75.00%
DG: Jason Pelletier | Morale : 50 | Moyenne d’équipe : 61
Prochains matchs #240 vs Coachella Valley Firebirds

Centre de jeu
Chicago Wolves
7-5-2, 16pts
4
FINAL
6 Milwaukee Admirals
9-4-2, 20pts
Team Stats
W1SéquenceL1
4-2-2Fiche domicile6-0-1
3-3-0Fiche domicile3-4-1
4-5-1Derniers 10 matchs6-2-2
4.71Buts par match 4.00
3.71Buts contre par match 3.40
17.86%Pourcentage en avantage numérique21.95%
75.00%Pourcentage en désavantage numérique74.51%
Belleville Senators
4-9-1, 9pts
0
FINAL
6 Chicago Wolves
7-5-2, 16pts
Team Stats
L2SéquenceW1
2-5-0Fiche domicile4-2-2
2-4-1Fiche domicile3-3-0
4-5-1Derniers 10 matchs4-5-1
3.21Buts par match 4.71
4.64Buts contre par match 3.71
13.51%Pourcentage en avantage numérique17.86%
65.91%Pourcentage en désavantage numérique75.00%
Chicago Wolves
7-5-2, 16pts
Jour 36
Coachella Valley Firebirds
9-3-2, 20pts
Statistiques d’équipe
W1SéquenceW1
4-2-2Fiche domicile4-3-0
3-3-0Fiche visiteur5-0-2
4-5-110 derniers matchs7-2-1
4.71Buts par match 4.86
3.71Buts contre par match 4.86
17.86%Pourcentage en avantage numérique25.64%
75.00%Pourcentage en désavantage numérique78.79%
Chicago Wolves
7-5-2, 16pts
Jour 38
Texas Stars
6-5-2, 14pts
Statistiques d’équipe
W1SéquenceW3
4-2-2Fiche domicile4-4-0
3-3-0Fiche visiteur2-1-2
4-5-110 derniers matchs5-4-1
4.71Buts par match 4.77
3.71Buts contre par match 4.77
17.86%Pourcentage en avantage numérique13.79%
75.00%Pourcentage en désavantage numérique78.57%
Cleveland Monsters
9-5-1, 19pts
Jour 40
Chicago Wolves
7-5-2, 16pts
Statistiques d’équipe
W3SéquenceW1
4-3-0Fiche domicile4-2-2
5-2-1Fiche visiteur3-3-0
6-3-110 derniers matchs4-5-1
4.13Buts par match 4.71
4.27Buts contre par match 4.71
24.32%Pourcentage en avantage numérique17.86%
54.05%Pourcentage en désavantage numérique75.00%
Meneurs d'équipe
Clark BishopButs
Clark Bishop
14
Jansen HarkinsPasses
Jansen Harkins
15
Jansen HarkinsPoints
Jansen Harkins
24
Plus/Moins
Dyllan Gill
19
Matt TomkinsVictoires
Matt Tomkins
6
Pourcentage d’arrêts
Marcus Hogberg
0.905

Statistiques d’équipe
Buts pour
66
4.71 GFG
Tirs pour
527
37.64 Avg
Pourcentage en avantage numérique
17.9%
5 GF
Début de zone offensive
39.8%
Buts contre
52
3.71 GAA
Tirs contre
501
35.79 Avg
Pourcentage en désavantage numérique
75.0%%
8 GA
Début de la zone défensive
41.3%
Informations de l'équipe

Directeur généralJason Pelletier
EntraîneurRod Brind'Amour
DivisionCentral Division
ConférenceWestern Conference
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité9,000
Assistance8,743
Billets de saison8,370


Informations de la formation

Équipe Pro16
Équipe Mineure21
Limite contact 37 / 60
Espoirs5


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Jansen HarkinsXXX96.00814584738080826866646270687363050700281787,500$
2Colin WhiteXXX96.00624274666973726460605859628058050630281775,000$
3Clark BishopX96.00594566656370696361595859625954050610291775,000$
4Jordan DumaisX100.00574067625859575741555455585050050570212860,000$
5Juuso ValimakiX100.006543867583878372406865747176660507302712,000,000$
6Ville OttavainenX100.00684367637164626440595667615050050630231867,500$
7Colton WhiteX100.00574368656471696240595563617052050620281775,000$
8Leo LoofX100.00594564656364635940595164585150050610231867,500$
9Dyllan GillX100.00594067626159575740545559585050050580212870,000$
Rayé
1Aidan McDonoughX100.006141716567656160425356596053500505902600$
2Ole Julian Bjorgvik-HolmX100.006143616264626158405455615851500505902300$
3Eamon PowellX100.005540666457595755405454605851500505802300$
MOYENNE D’ÉQUIPE99.0062437066676866624658576361605405062
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Marcus Hogberg99.0068716986686561636668657768050640301775,000$
2Matt Tomkins100.0071697064696971696970676558050640312775,000$
Rayé
1Mitch Gibson100.00685756656363646364625153500505802600$
2Mack Guzda100.00554949645654545154544551500505102400$
MOYENNE D’ÉQUIPE99.756662617064636362636457625705059
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Rod Brind'Amour1111111CAN5451$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jansen HarkinsChicago Wolves (CAR)C/LW/RW149152410120376184206310.71%732022.8701113210001171064.02%49200001.5011000220
2Clark BishopChicago Wolves (CAR)C1414519280384879205417.72%532223.011127200001191056.97%33700001.1801000320
3Colin WhiteChicago Wolves (CAR)C/LW/RW1461117840172359184310.17%032022.870228210000192159.38%3200001.0601000102
4Dyllan GillChicago Wolves (CAR)D1421315196024151731511.76%1422916.36000030000600100.00%100001.3100000002
5Jordan DumaisChicago Wolves (CAR)RW14691554020396094010.00%325918.56000000001151043.90%4100001.1500000011
6Ville OttavainenChicago Wolves (CAR)D14510151120573421102723.81%2231822.75101419000115000%000000.9400000033
7Colton WhiteChicago Wolves (CAR)D1411213-26019302810213.57%2229921.40011820000024000%100000.8700000010
Statistiques d’équipe totales ou en moyenne984375118435202122503489026312.36%73206921.122574010600041185160.29%90400001.1413000698
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Matt TomkinsChicago Wolves (CAR)116320.9033.4867300394030020.3333110001
2Marcus HogbergChicago Wolves (CAR)31200.9053.031780199500100314100
Statistiques d’équipe totales ou en moyenne147520.9043.38852014849800331414101


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Aidan McDonoughChicago Wolves (CAR)LW261999-11-06USANo201 Lbs6 ft2NoNoFantasy DraftNoNo02025-07-22FalseFalsePro & Farm0$0$No---------------------------Lien NHL
Clark BishopChicago Wolves (CAR)C291996-03-29CANNo198 Lbs6 ft1NoNoFantasy DraftNoNo12025-07-02FalseFalsePro & Farm775,000$621,751$0$0$No---------------------------Lien NHL
Colin WhiteChicago Wolves (CAR)C/LW/RW281997-01-30USANo196 Lbs6 ft1NoNoFantasy DraftNoNo12025-07-02FalseFalsePro & Farm775,000$621,751$0$0$No---------------------------Lien NHL
Colton WhiteChicago Wolves (CAR)D281997-05-03CANNo187 Lbs6 ft1NoNoFantasy DraftNoNo12025-05-26FalseFalsePro & Farm775,000$621,751$0$0$No---------------------------Lien NHL
Dyllan GillChicago Wolves (CAR)D212004-06-07CANNo179 Lbs6 ft2NoNoFantasy DraftNoNo22025-05-26FalseFalsePro & Farm870,000$697,966$0$0$No870,000$--------870,000$--------No--------
Eamon PowellChicago Wolves (CAR)D232002-05-10USANo165 Lbs5 ft11NoNoFantasy DraftNoNo02025-07-22FalseFalsePro & Farm0$0$No---------------------------
Jansen HarkinsChicago Wolves (CAR)C/LW/RW281997-05-23USANo199 Lbs6 ft1NoNoFantasy DraftNoNo12025-05-26FalseFalsePro & Farm787,500$631,780$0$0$No---------------------------Lien NHL
Jordan DumaisChicago Wolves (CAR)RW212004-04-15CANNo174 Lbs5 ft9NoNoAssign ManuallyNoNo22025-05-26FalseFalsePro & Farm860,000$689,944$0$0$No860,000$--------860,000$--------No--------
Juuso ValimakiChicago Wolves (CAR)D271998-10-06FINNo201 Lbs6 ft2NoNoAssign ManuallyNoYes12025-05-26FalseFalsePro & Farm2,000,000$1,604,520$0$0$No---------------------------Lien NHL
Leo LoofChicago Wolves (CAR)D232002-04-25SWENo176 Lbs6 ft2NoNoAssign ManuallyNoNo12025-05-26FalseFalsePro & Farm867,500$695,960$0$0$No---------------------------
Mack GuzdaChicago Wolves (CAR)G242001-01-11USANo215 Lbs6 ft5NoNoFantasy DraftNoNo02025-07-22FalseFalsePro & Farm0$0$No---------------------------Lien NHL
Marcus HogbergChicago Wolves (CAR)G301994-11-25SWENo234 Lbs6 ft5NoNoFantasy DraftNoNo12025-05-26FalseFalsePro & Farm775,000$621,751$0$0$No---------------------------
Matt TomkinsChicago Wolves (CAR)G311994-06-19CANNo192 Lbs6 ft4NoNoFantasy DraftNoNo22025-07-02FalseFalsePro & Farm775,000$621,751$0$0$No775,000$--------775,000$--------No--------Lien NHL
Mitch GibsonChicago Wolves (CAR)G261999-06-25USANo205 Lbs6 ft2NoNoFantasy DraftNoNo02025-07-22FalseFalsePro & Farm0$0$No---------------------------Lien NHL
Ole Julian Bjorgvik-HolmChicago Wolves (CAR)D232002-05-23NORNo198 Lbs6 ft4NoNoFantasy DraftNoNo02025-07-22FalseFalsePro & Farm0$0$No---------------------------
Ville OttavainenChicago Wolves (CAR)D232002-08-12FINNo216 Lbs6 ft5NoNoAssign ManuallyNoNo12025-05-26FalseFalsePro & Farm867,500$695,960$0$0$No---------------------------Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1625.69196 Lbs6 ft20.88632,969$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Colin WhiteJansen Harkins30122
2Clark Bishop30122
3Jordan Dumais25122
4Colin WhiteJansen HarkinsClark Bishop15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Ville Ottavainen30122
2Colton White30122
3Dyllan Gill25122
4Ville Ottavainen15122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Colin WhiteJansen Harkins50122
2Clark Bishop50122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Ville Ottavainen50122
2Colton White50122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Jansen HarkinsColin White50122
2Clark Bishop50122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Ville Ottavainen50122
2Colton White50122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Jansen Harkins50122Ville Ottavainen50122
2Colin White50122Colton White50122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Jansen HarkinsColin White50122
2Clark Bishop50122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Ville Ottavainen50122
2Colton White50122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Colin WhiteJansen HarkinsVille Ottavainen
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Colin WhiteJansen HarkinsVille Ottavainen
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Jordan Dumais, , Jordan Dumais,
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Dyllan Gill, Colton White, Dyllan GillColton White,
Tirs de pénalité
Jansen Harkins, Colin White, Clark Bishop, ,
Gardien
#1 : , #2 : Marcus Hogberg
Lignes d’attaque personnalisées en prolongation
Jansen Harkins, Colin White, Clark Bishop, , , Jordan Dumais, , , ,
Lignes de défense personnalisées en prolongation
, Ville Ottavainen, Colton White, , Dyllan Gill


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Belleville Senators11000000606110000006060000000000021.00069150122261633516316519393041119000%30100.00%028950956.78%29852956.33%15124262.40%31722335710417986
2Calgary Wranglers1000000134-11000000134-10000000000010.5003690022261634616316519393072179111.11%110.00%028950956.78%29852956.33%15124262.40%31722335710417986
3Colorado Eagles20100100710-31000010034-11010000046-210.2507101710222616378163165193982171054300.00%50100.00%028950956.78%29852956.33%15124262.40%31722335710417986
4Henderson Silver Knights1010000014-3000000000001010000014-300.0001230022261633016316519393512620000%3166.67%028950956.78%29852956.33%15124262.40%31722335710417986
5Manitoba Moose210010001165110000007341000100043141.00011203100222616371163165193965176463133.33%3166.67%028950956.78%29852956.33%15124262.40%31722335710417986
6Milwaukee Admirals1010000046-2000000000001010000046-200.0004711102226163341631651939329225100.00%10100.00%028950956.78%29852956.33%15124262.40%31722335710417986
7Rockford IceHogs1010000034-11010000034-10000000000000.0003580022261633116316519393413101211100.00%4250.00%028950956.78%29852956.33%15124262.40%31722335710417986
8San Jose Barracuda10001000761100010007610000000000021.000714210022261634916316519393311629000%3233.33%028950956.78%29852956.33%15124262.40%31722335710417986
9Texas Stars2110000010911010000045-11100000064220.500101929102226163961631651939801512527114.29%40100.00%028950956.78%29852956.33%15124262.40%31722335710417986
10Tucson Roadrunners2200000014311110000008171100000062441.000142438002226163571631651939802217354125.00%5180.00%028950956.78%29852956.33%15124262.40%31722335710417986
Total145502101665214832011014127146230100025250160.5716611618231222616352716316519395011278230928517.86%32875.00%028950956.78%29852956.33%15124262.40%31722335710417986
_Since Last GM Reset145502101665214832011014127146230100025250160.5716611618231222616352716316519395011278230928517.86%32875.00%028950956.78%29852956.33%15124262.40%31722335710417986
_Vs Conference1345021016052872201101352786230100025250140.5386010716730222616349216316519394711237129028517.86%29872.41%028950956.78%29852956.33%15124262.40%31722335710417986
_Vs Division10440110049381152200100251785220100024213110.55049851343022261633671631651939373935722419421.05%22481.82%028950956.78%29852956.33%15124262.40%31722335710417986

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
1416W1661161825275011278230931
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
145521016652
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
83211014127
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
62310002525
Derniers 10 matchs
WLOTWOTL SOWSOL
450100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
28517.86%32875.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
16316519392226163
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
28950956.78%29852956.33%15124262.40%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
31722335710417986


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
15Calgary Wranglers4Chicago Wolves3LXXSommaire du match
314Chicago Wolves6Texas Stars4WSommaire du match
845Chicago Wolves6Tucson Roadrunners2WSommaire du match
1055Tucson Roadrunners1Chicago Wolves8WSommaire du match
1374San Jose Barracuda6Chicago Wolves7WXSommaire du match
1699Texas Stars5Chicago Wolves4LSommaire du match
19118Chicago Wolves4Colorado Eagles6LSommaire du match
21130Chicago Wolves4Manitoba Moose3WXSommaire du match
23142Manitoba Moose3Chicago Wolves7WSommaire du match
26162Chicago Wolves1Henderson Silver Knights4LSommaire du match
27174Colorado Eagles4Chicago Wolves3LXSommaire du match
30198Rockford IceHogs4Chicago Wolves3LSommaire du match
32210Chicago Wolves4Milwaukee Admirals6LSommaire du match
34227Belleville Senators0Chicago Wolves6WSommaire du match
36240Chicago Wolves-Coachella Valley Firebirds-
38258Chicago Wolves-Texas Stars-
40270Cleveland Monsters-Chicago Wolves-
42283Chicago Wolves-Tucson Roadrunners-
44295Chicago Wolves-Lehigh Valley Phantoms-
46309Tucson Roadrunners-Chicago Wolves-
49326Chicago Wolves-Henderson Silver Knights-
51339Coachella Valley Firebirds-Chicago Wolves-
54360Chicago Wolves-Toronto Marlies-
56369Texas Stars-Chicago Wolves-
60398Milwaukee Admirals-Chicago Wolves-
62407Chicago Wolves-Bridgeport Islanders-
65426Chicago Wolves-Coachella Valley Firebirds-
66435Bakersfield Condors-Chicago Wolves-
69455Chicago Wolves-Belleville Senators-
71466San Diego Gulls-Chicago Wolves-
75494San Jose Barracuda-Chicago Wolves-
78504Chicago Wolves-Colorado Eagles-
81525Rockford IceHogs-Chicago Wolves-
83536Chicago Wolves-Rockford IceHogs-
86556Calgary Wranglers-Chicago Wolves-
89575Chicago Wolves-Grand Rapids Griffins-
91590Milwaukee Admirals-Chicago Wolves-
94603Chicago Wolves-San Diego Gulls-
96623Bakersfield Condors-Chicago Wolves-
100644Chicago Wolves-Abbotsford Canucks-
101654Manitoba Moose-Chicago Wolves-
107685Colorado Eagles-Chicago Wolves-
109702Chicago Wolves-Calgary Wranglers-
111715Ontario Reign-Chicago Wolves-
113732Chicago Wolves-Rockford IceHogs-
116746Charlotte Checkers-Chicago Wolves-
118761Chicago Wolves-Bakersfield Condors-
121780Abbotsford Canucks-Chicago Wolves-
123797Chicago Wolves-Rochester Americans-
125811Chicago Wolves-Manitoba Moose-
127817Grand Rapids Griffins-Chicago Wolves-
129836Chicago Wolves-Hershey Bears-
130844Chicago Wolves-Utica Comets-
132854Abbotsford Canucks-Chicago Wolves-
135873Chicago Wolves-San Jose Barracuda-
137885Wilkes-Barre Penguins-Chicago Wolves-
140905Chicago Wolves-Milwaukee Admirals-
141913Chicago Wolves-Ontario Reign-
143921Ontario Reign-Chicago Wolves-
146945Springfield Thunderbirds-Chicago Wolves-
148962Chicago Wolves-Hartford Wolf Pack-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
151978Henderson Silver Knights-Chicago Wolves-
1551003Chicago Wolves-Laval Rocket-
1561009Chicago Wolves-Iowa Wild-
1581016Syracuse Crunch-Chicago Wolves-
1611037Chicago Wolves-Iowa Wild-
1641052Iowa Wild-Chicago Wolves-
1661064Chicago Wolves-San Diego Gulls-
1691085Providence Bruins-Chicago Wolves-
1761115Iowa Wild-Chicago Wolves-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité60003000
Prix des billets5025
Assistance46,54223,403
Assistance PCT96.96%97.51%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
27 8743 - 97.15% 436,826$3,494,610$9000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
200,270$ 1,012,750$ 1,012,750$ 1$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 200,270$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
11,794,309$ 142 5,722$ 812,524$




Chicago Wolves Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Chicago Wolves Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Chicago Wolves Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA