Votre version du STHS est obsolète! Veuillez mettre à jour votre version du STHS!
Please rotate your device to landscape mode for a better experience.
Connexion

Chicago Wolves
GP: 34 | W: 11 | L: 16 | OTL: 7 | P: 29
GF: 151 | GA: 159 | PP%: 28.21% | PK%: 65.59%
DG: Jason Pelletier | Morale : 50 | Moyenne d’équipe : 61
Prochains matchs #556 vs Calgary Wranglers

Centre de jeu
Rockford IceHogs
17-14-5, 39pts
5
FINAL
3 Chicago Wolves
11-16-7, 29pts
Team Stats
W3SéquenceL2
11-4-2Fiche domicile5-7-5
6-10-3Fiche domicile6-9-2
6-3-1Derniers 10 matchs2-6-2
3.72Buts par match 4.44
4.08Buts contre par match 4.68
24.73%Pourcentage en avantage numérique28.21%
71.91%Pourcentage en désavantage numérique65.59%
Chicago Wolves
11-16-7, 29pts
3
FINAL
5 Rockford IceHogs
17-14-5, 39pts
Team Stats
L2SéquenceW3
5-7-5Fiche domicile11-4-2
6-9-2Fiche domicile6-10-3
2-6-2Derniers 10 matchs6-3-1
4.44Buts par match 3.72
4.68Buts contre par match 4.08
28.21%Pourcentage en avantage numérique24.73%
65.59%Pourcentage en désavantage numérique71.91%
Calgary Wranglers
24-11-2, 50pts
Jour 86
Chicago Wolves
11-16-7, 29pts
Statistiques d’équipe
W1SéquenceL2
11-5-1Fiche domicile5-7-5
13-6-1Fiche visiteur6-9-2
4-6-010 derniers matchs2-6-2
5.03Buts par match 4.44
4.51Buts contre par match 4.44
30.85%Pourcentage en avantage numérique28.21%
69.52%Pourcentage en désavantage numérique65.59%
Chicago Wolves
11-16-7, 29pts
Jour 89
Grand Rapids Griffins
21-14-2, 44pts
Statistiques d’équipe
L2SéquenceW4
5-7-5Fiche domicile12-4-1
6-9-2Fiche visiteur9-10-1
2-6-210 derniers matchs6-4-0
4.44Buts par match 4.05
4.68Buts contre par match 4.05
28.21%Pourcentage en avantage numérique28.00%
65.59%Pourcentage en désavantage numérique73.11%
Milwaukee Admirals
20-10-3, 43pts
Jour 91
Chicago Wolves
11-16-7, 29pts
Statistiques d’équipe
W3SéquenceL2
13-3-1Fiche domicile5-7-5
7-7-2Fiche visiteur6-9-2
7-2-110 derniers matchs2-6-2
4.24Buts par match 4.44
3.55Buts contre par match 4.44
34.83%Pourcentage en avantage numérique28.21%
75.73%Pourcentage en désavantage numérique65.59%
Meneurs d'équipe
Clark BishopButs
Clark Bishop
14
Ville OttavainenPasses
Ville Ottavainen
34
Ville OttavainenPoints
Ville Ottavainen
44
Plus/Moins
Dyllan Gill
11
Matt TomkinsVictoires
Matt Tomkins
6
Matt TomkinsPourcentage d’arrêts
Matt Tomkins
0.903

Statistiques d’équipe
Buts pour
151
4.44 GFG
Tirs pour
1304
38.35 Avg
Pourcentage en avantage numérique
28.2%
22 GF
Début de zone offensive
39.4%
Buts contre
159
4.68 GAA
Tirs contre
1292
38.00 Avg
Pourcentage en désavantage numérique
65.6%%
32 GA
Début de la zone défensive
40.3%
Informations de l'équipe

Directeur généralJason Pelletier
EntraîneurRod Brind'Amour
DivisionCentral Division
ConférenceWestern Conference
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité9,000
Assistance8,715
Billets de saison8,370


Informations de la formation

Équipe Pro18
Équipe Mineure20
Limite contact 38 / 60
Espoirs5


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Jansen HarkinsXXX100.00814584738080826866646270687363050700281787,500$
2Colin WhiteXXX100.00624274666973726460605859628058050630281775,000$
3Nolan FooteXX100.00594271667170646543616057646452050620251775,000$
4Clark BishopX100.00594566656370696361595859625954050610291775,000$
5Jordan DumaisX100.00574067625859575741555455585050050570212860,000$
6Calen AddisonX100.00584565706674726940695860666552050650251775,000$
7Ville OttavainenX100.00684367637164626440595667615050050630231867,500$
8Colton WhiteX100.00574368656471696240595563617052050620281775,000$
9Leo LoofX100.00594564656364635940595164585150050610231867,500$
10Dyllan GillX100.00594067626159575740545559585050050580212870,000$
Rayé
1Aidan McDonoughX100.006141716567656160425356596053500505902600$
2Ole Julian Bjorgvik-HolmX100.006143616264626158405455615851500505902300$
3Eamon PowellX100.005540666457595755405454605851500505802300$
MOYENNE D’ÉQUIPE100.0061436965666765624658566161595205061
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Matthew Murray100.0074677264717274727373635550050650272775,000$
2Matt Tomkins100.0071697064696971696970676558050640312775,000$
Rayé
1Marcus Hogberg100.0068716986686561636668657768050640311775,000$
2Mitch Gibson100.00685756656363646364625153500505802600$
3Mack Guzda100.00554949645654545154544551500505102400$
MOYENNE D’ÉQUIPE100.006763636965656564656558605505060
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Rod Brind'Amour1111111CAN5451$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ville OttavainenChicago Wolves (CAR)D34103444-13201238478406712.82%7976922.63358245600014710100.00%500001.1401000147
2Colton WhiteChicago Wolves (CAR)D3493443-5240806980346411.25%6871921.1744827580000591033.33%300001.1901000332
3Jordan DumaisChicago Wolves (CAR)RW341217292604683108308911.11%1054015.90000000001321041.38%5800001.0700000212
4Dyllan GillChicago Wolves (CAR)D344232711240624440133710.00%4055116.210112700001600100.00%100000.9800000033
5Jansen HarkinsChicago Wolves (CAR)C/LW/RW1691726914042719925799.09%836322.7102213220002191064.14%55500001.4312000220
6Clark BishopChicago Wolves (CAR)C1514620280405083235916.87%534523.061127200001211056.70%35800001.1601000320
7Colin WhiteChicago Wolves (CAR)C/LW/RW167121976017287219519.72%036322.730339220001232157.58%3300001.0402000102
Statistiques d’équipe totales ou en moyenne1836514320825114041042956018444611.61%210365319.97816248218600062217160.12%101300001.1417000121516
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Matt TomkinsChicago Wolves (CAR)116320.9033.4867300394030020.3333110001
2Marcus HogbergChicago Wolves (CAR)61320.8923.9236701242220010.6673617100
Statistiques d’équipe totales ou en moyenne177640.8993.641040016362500361717101


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Aidan McDonoughChicago Wolves (CAR)LW261999-11-06USANo201 Lbs6 ft2NoNoFantasy DraftNoNo02025-07-22FalseFalsePro & Farm0$0$No---------------------------Lien NHL
Calen AddisonChicago Wolves (CAR)D252000-04-11CANNo181 Lbs5 ft11NoNoAssign ManuallyNoNo12025-07-02FalseFalsePro & Farm775,000$407,203$0$0$No---------------------------Lien NHL
Clark BishopChicago Wolves (CAR)C291996-03-29CANNo198 Lbs6 ft1NoNoFantasy DraftNoNo12025-07-02FalseFalsePro & Farm775,000$407,203$0$0$No---------------------------Lien NHL
Colin WhiteChicago Wolves (CAR)C/LW/RW281997-01-30USANo196 Lbs6 ft1NoNoFantasy DraftNoNo12025-07-02FalseFalsePro & Farm775,000$407,203$0$0$No---------------------------Lien NHL
Colton WhiteChicago Wolves (CAR)D281997-05-03CANNo187 Lbs6 ft1NoNoFantasy DraftNoNo12025-05-26FalseFalsePro & Farm775,000$407,203$0$0$No---------------------------Lien NHL
Dyllan GillChicago Wolves (CAR)D212004-06-07CANNo179 Lbs6 ft2NoNoFantasy DraftNoNo22025-05-26FalseFalsePro & Farm870,000$457,119$0$0$No870,000$--------870,000$--------No--------
Eamon PowellChicago Wolves (CAR)D232002-05-10USANo165 Lbs5 ft11NoNoFantasy DraftNoNo02025-07-22FalseFalsePro & Farm0$0$No---------------------------
Jansen HarkinsChicago Wolves (CAR)C/LW/RW281997-05-23USANo199 Lbs6 ft1NoNoFantasy DraftNoNo12025-05-26FalseFalsePro & Farm787,500$413,771$0$0$No---------------------------Lien NHL
Jordan DumaisChicago Wolves (CAR)RW212004-04-15CANNo174 Lbs5 ft9NoNoAssign ManuallyNoNo22025-05-26FalseFalsePro & Farm860,000$451,864$0$0$No860,000$--------860,000$--------No--------
Leo LoofChicago Wolves (CAR)D232002-04-25SWENo176 Lbs6 ft2NoNoAssign ManuallyNoNo12025-05-26FalseFalsePro & Farm867,500$455,805$0$0$No---------------------------
Mack GuzdaChicago Wolves (CAR)G242001-01-11USANo215 Lbs6 ft5NoNoFantasy DraftNoNo02025-07-22FalseFalsePro & Farm0$0$No---------------------------Lien NHL
Marcus HogbergChicago Wolves (CAR)G311994-11-25SWENo234 Lbs6 ft5NoNoFantasy DraftNoNo12025-05-26FalseFalsePro & Farm775,000$407,203$0$0$No---------------------------
Matt TomkinsChicago Wolves (CAR)G311994-06-19CANNo192 Lbs6 ft4NoNoFantasy DraftNoNo22025-07-02FalseFalsePro & Farm775,000$407,203$0$0$No775,000$--------775,000$--------No--------Lien NHL
Matthew MurrayChicago Wolves (CAR)G271998-02-02CANNo194 Lbs6 ft1NoNoAssign ManuallyNoNo22025-06-29FalseFalsePro & Farm775,000$407,203$0$0$No775,000$--------775,000$--------No--------
Mitch GibsonChicago Wolves (CAR)G261999-06-25USANo205 Lbs6 ft2NoNoFantasy DraftNoNo02025-07-22FalseFalsePro & Farm0$0$No---------------------------Lien NHL
Nolan FooteChicago Wolves (CAR)LW/RW252000-11-29CANNo196 Lbs6 ft3NoNoAssign ManuallyNoNo12025-07-02FalseFalsePro & Farm775,000$407,203$0$0$No---------------------------Lien NHL
Ole Julian Bjorgvik-HolmChicago Wolves (CAR)D232002-05-23NORNo198 Lbs6 ft4NoNoFantasy DraftNoNo02025-07-22FalseFalsePro & Farm0$0$No---------------------------
Ville OttavainenChicago Wolves (CAR)D232002-08-12FINNo216 Lbs6 ft5NoNoAssign ManuallyNoNo12025-05-26FalseFalsePro & Farm867,500$455,805$0$0$No---------------------------Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1825.67195 Lbs6 ft20.94580,694$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
130122
230122
3Jordan Dumais25122
415122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Ville Ottavainen30122
2Colton White30122
3Dyllan Gill25122
4Ville Ottavainen15122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
150122
250122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Ville Ottavainen50122
2Colton White50122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
150122
250122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Ville Ottavainen50122
2Colton White50122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
150122Ville Ottavainen50122
250122Colton White50122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
150122
250122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Ville Ottavainen50122
2Colton White50122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Ville Ottavainen
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Ville Ottavainen
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Jordan Dumais, , Jordan Dumais,
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Dyllan Gill, Colton White, Dyllan GillColton White,
Tirs de pénalité
, , , ,
Gardien
#1 : , #2 :
Lignes d’attaque personnalisées en prolongation
, , , , , Jordan Dumais, , , ,
Lignes de défense personnalisées en prolongation
, Ville Ottavainen, Colton White, , Dyllan Gill


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bakersfield Condors1010000056-11010000056-10000000000000.0005101500555142444430408450253098155240.00%4175.00%0652123152.97%667125753.06%34363454.10%775545867247429206
2Belleville Senators210010001147110000006061000100054141.0001118290155514246643040845025672419402150.00%7185.71%0652123152.97%667125753.06%34363454.10%775545867247429206
3Bridgeport Islanders1010000038-5000000000001010000038-500.0003690055514243743040845025391117343133.33%6433.33%0652123152.97%667125753.06%34363454.10%775545867247429206
4Calgary Wranglers1000000134-11000000134-10000000000010.50036900555142446430408450253072179111.11%110.00%0652123152.97%667125753.06%34363454.10%775545867247429206
5Cleveland Monsters1000010045-11000010045-10000000000010.500481200555142445430408450254113229100.00%10100.00%0652123152.97%667125753.06%34363454.10%775545867247429206
6Coachella Valley Firebirds303000001220-81010000048-420200000812-400.00012223400555142498430408450251334318646233.33%10640.00%0652123152.97%667125753.06%34363454.10%775545867247429206
7Colorado Eagles31100100131211000010034-121100000108230.500132134105551424123430408450251142716778225.00%8275.00%0652123152.97%667125753.06%34363454.10%775545867247429206
8Henderson Silver Knights2020000038-5000000000002020000038-500.0003690055514247643040845025792812424125.00%6266.67%0652123152.97%667125753.06%34363454.10%775545867247429206
9Lehigh Valley Phantoms11000000835000000000001100000083521.00081523005551424604304084502546152204250.00%110.00%0652123152.97%667125753.06%34363454.10%775545867247429206
10Manitoba Moose210010001165110000007341000100043141.000112031005551424714304084502565176463133.33%3166.67%0652123152.97%667125753.06%34363454.10%775545867247429206
11Milwaukee Admirals20100001912-31000000156-11010000046-210.25091625105551424834304084502572166482150.00%3233.33%0652123152.97%667125753.06%34363454.10%775545867247429206
12Rockford IceHogs30300000914-52020000069-31010000035-200.0009172610555142497430408450251143918535120.00%8362.50%0652123152.97%667125753.06%34363454.10%775545867247429206
13San Diego Gulls1000010056-11000010056-10000000000010.5005101500555142437430408450255322823100.00%3166.67%0652123152.97%667125753.06%34363454.10%775545867247429206
14San Jose Barracuda201010001113-2201010001113-20000000000020.5001122330055514249143040845025632414604125.00%7271.43%0652123152.97%667125753.06%34363454.10%775545867247429206
15Texas Stars421000012019121100000990210000011110150.62520375710555142417543040845025159352210014535.71%9277.78%0652123152.97%667125753.06%34363454.10%775545867247429206
16Toronto Marlies1010000036-3000000000001010000036-300.00035800555142421430408450253681025100.00%5180.00%0652123152.97%667125753.06%34363454.10%775545867247429206
17Tucson Roadrunners421001002113821100000116521000100107350.625213859105551424134430408450251513529956116.67%11281.82%0652123152.97%667125753.06%34363454.10%775545867247429206
Total3481603403151159-8174701302797901749021017280-8290.4261512774285155514241304430408450251292373209788782228.21%933265.59%0652123152.97%667125753.06%34363454.10%775545867247429206
_Since Last GM Reset3481603403151159-8174701302797901749021017280-8290.4261512774285155514241304430408450251292373209788782228.21%933265.59%0652123152.97%667125753.06%34363454.10%775545867247429206
_Vs Conference2861402303122133-111537012026974-51337011015359-6220.3931222253475055514241075430408450251063302159640671826.87%732565.75%0652123152.97%667125753.06%34363454.10%775545867247429206
_Vs Division1867012028376793400101413749330110142393180.500831492325055514246834304084502567516997419381128.95%421271.43%0652123152.97%667125753.06%34363454.10%775545867247429206

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
3429L21512774281304129237320978851
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
348163403151159
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
174713027979
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
174921017280
Derniers 10 matchs
WLOTWOTL SOWSOL
260101
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
782228.21%933265.59%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
430408450255551424
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
652123152.97%667125753.06%34363454.10%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
775545867247429206


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
15Calgary Wranglers4Chicago Wolves3LXXSommaire du match
314Chicago Wolves6Texas Stars4WSommaire du match
845Chicago Wolves6Tucson Roadrunners2WSommaire du match
1055Tucson Roadrunners1Chicago Wolves8WSommaire du match
1374San Jose Barracuda6Chicago Wolves7WXSommaire du match
1699Texas Stars5Chicago Wolves4LSommaire du match
19118Chicago Wolves4Colorado Eagles6LSommaire du match
21130Chicago Wolves4Manitoba Moose3WXSommaire du match
23142Manitoba Moose3Chicago Wolves7WSommaire du match
26162Chicago Wolves1Henderson Silver Knights4LSommaire du match
27174Colorado Eagles4Chicago Wolves3LXSommaire du match
30198Rockford IceHogs4Chicago Wolves3LSommaire du match
32210Chicago Wolves4Milwaukee Admirals6LSommaire du match
34227Belleville Senators0Chicago Wolves6WSommaire du match
36240Chicago Wolves3Coachella Valley Firebirds5LSommaire du match
38258Chicago Wolves5Texas Stars6LXXSommaire du match
40270Cleveland Monsters5Chicago Wolves4LXSommaire du match
42283Chicago Wolves4Tucson Roadrunners5LXSommaire du match
44295Chicago Wolves8Lehigh Valley Phantoms3WSommaire du match
46309Tucson Roadrunners5Chicago Wolves3LSommaire du match
49326Chicago Wolves2Henderson Silver Knights4LSommaire du match
51339Coachella Valley Firebirds8Chicago Wolves4LSommaire du match
54360Chicago Wolves3Toronto Marlies6LSommaire du match
56369Texas Stars4Chicago Wolves5WSommaire du match
60398Milwaukee Admirals6Chicago Wolves5LXXSommaire du match
62407Chicago Wolves3Bridgeport Islanders8LSommaire du match
65426Chicago Wolves5Coachella Valley Firebirds7LSommaire du match
66435Bakersfield Condors6Chicago Wolves5LSommaire du match
69455Chicago Wolves5Belleville Senators4WXSommaire du match
71466San Diego Gulls6Chicago Wolves5LXSommaire du match
75494San Jose Barracuda7Chicago Wolves4LSommaire du match
78504Chicago Wolves6Colorado Eagles2WSommaire du match
81525Rockford IceHogs5Chicago Wolves3LSommaire du match
83536Chicago Wolves3Rockford IceHogs5LSommaire du match
86556Calgary Wranglers-Chicago Wolves-
89575Chicago Wolves-Grand Rapids Griffins-
91590Milwaukee Admirals-Chicago Wolves-
94603Chicago Wolves-San Diego Gulls-
96623Bakersfield Condors-Chicago Wolves-
100644Chicago Wolves-Abbotsford Canucks-
101654Manitoba Moose-Chicago Wolves-
107685Colorado Eagles-Chicago Wolves-
109702Chicago Wolves-Calgary Wranglers-
111715Ontario Reign-Chicago Wolves-
113732Chicago Wolves-Rockford IceHogs-
116746Charlotte Checkers-Chicago Wolves-
118761Chicago Wolves-Bakersfield Condors-
121780Abbotsford Canucks-Chicago Wolves-
123797Chicago Wolves-Rochester Americans-
125811Chicago Wolves-Manitoba Moose-
127817Grand Rapids Griffins-Chicago Wolves-
129836Chicago Wolves-Hershey Bears-
130844Chicago Wolves-Utica Comets-
132854Abbotsford Canucks-Chicago Wolves-
135873Chicago Wolves-San Jose Barracuda-
137885Wilkes-Barre Penguins-Chicago Wolves-
140905Chicago Wolves-Milwaukee Admirals-
141913Chicago Wolves-Ontario Reign-
143921Ontario Reign-Chicago Wolves-
146945Springfield Thunderbirds-Chicago Wolves-
148962Chicago Wolves-Hartford Wolf Pack-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
151978Henderson Silver Knights-Chicago Wolves-
1551003Chicago Wolves-Laval Rocket-
1561009Chicago Wolves-Iowa Wild-
1581016Syracuse Crunch-Chicago Wolves-
1611037Chicago Wolves-Iowa Wild-
1641052Iowa Wild-Chicago Wolves-
1661064Chicago Wolves-San Diego Gulls-
1691085Providence Bruins-Chicago Wolves-
1761115Iowa Wild-Chicago Wolves-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité60003000
Prix des billets5025
Assistance99,22448,939
Assistance PCT97.28%95.96%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
18 8715 - 96.84% 436,565$7,421,610$9000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
482,112$ 1,045,250$ 1,045,250$ 1$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 482,112$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
7,858,175$ 93 5,905$ 549,165$




Chicago Wolves Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Chicago Wolves Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Chicago Wolves Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA